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Part I: Background



General Model

• A signature scheme consists of three (or more)
related operations

• Key pair generation produces a public/private key
pair

• Signature operation produces a signature for a
message with a private key

• Verification operation checks a signature with a
public key



Types of Signature Scheme
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Trapdoor One-Way Functions

• A one-way function f(x) is easy to compute but
hard to invert:
– easy: x →→ f(x)

– hard: f(x) →→ x

• A trapdoor one-way function has trapdoor
information f-1 that makes it easy to invert:
– easy: f(x), f-1 →→ x = f-1(f(x))

• Many but not all signature schemes are based on
trapdoor OWFs



RSA Trapdoor OWF

• The RSA function is

f(x) = xe mod n

where n = pq, p and q are large random primes,
and e is relatively prime to p-1 and q-1

• This function is conjectured to be a trapdoor OWF

• Trapdoor is

f-1(x) = xd mod n

where d = e-1 mod lcm(p-1,q-1)



Embedding Operations

• An embedding operation µµ(M) maps from
message strings to “message representatives,”
which can be input to f-1

– e.g., a hash function with padding

– may be randomized

• Inverse operation checks whether a message
representative is correct

– in scheme with message recovery, also recovers
message part

• Current RSA signature schemes differ primarily in
terms of the embedding operation



Scheme with Appendix
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Scheme with Message Recovery
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Embedding Properties

• Embedding operation should have similar
properties to a hash function:

– one-way: for random x, hard to find M s.t. µµ(M) = x

– collision-resistant: hard to find M1, M2 s.t. µµ(M1) = µµ(M2)

• May also identify underlying algorithms
– but if so, must be done with care

• Should also interact well with trapdoor function
– ideally, mapping should appear “random”



Multiplicative Properties of RSA

• RSA function is a multiplicative homomorphism:
for all x, y,

f (xy mod n) = f(x) f(y) mod n

f-1(xy mod n) = f-1(x) f-1(y) mod n

• More generally:

f-1(∏∏ xi mod n) = ∏∏ (f-1(xi)) mod n

• Property is exploited in most forgery attacks on
RSA signatures, but also enhances recent
security proofs



Part II: Forgery and
Provable Security



Signature Forgery

• A forgery is a signature computed without the
signer’s private key

• Forgery attacks may involve interaction with the
signer: a chosen-message attack

• Forgery may produce a signature for a specified
message, or the message may be output with its
signature (existential forgery)



Multiplicative Forgery

• Based on the multiplicative properties of the RSA
function, if

µµ(M) = ∏∏ µµ(Mi)^ααi mod n

then

σσ(M) = ∏∏ σσ(Mi)^ααi mod n

• Signature for M can thus be forged given the
signatures for M1, …, Ml under a chosen-message
attack



Small Primes Method

• Suppose µµ(M) and µµ(M1), …, µµ(Ml) can be factored
into small primes

– Desmedt-Odlyzko (1986); Rivest (1991 in PKCS #1)

• Then the exponents ααi can be determined by
relationships among the prime factorizations

• Requires many messages if µµ maps to large
integers, but effective if µµ maps to small integers

• Limited applicability to current schemes



Recent Generalization

• Consider µµ(M), µµ(M1), …, µµ(Ml) mod n, and also
allow a fixed factor

– Coron-Naccache-Stern (1999)

• Effective if µµ maps to small integers mod n times
a fixed factor

• Broader applicability to current schemes:
– ISO 9796-2 [CNS99]

– ISO 9796-1 [Coppersmith-Halevi-Jutla (1999)]

– recovery of private key for Rabin-Williams variants
[Joye-Quisquater (1999)]



Integer Relations Method

• What if the equation

µµ(M) = f(t) ∏∏ µµ(Mi)^ααi

could be solved without factoring?

• Effective for weak µµ

• ISO 9796-1 broken with three chosen messages
[Grieu (1999)]



Reduction Proofs

• A reduction proof shows that inverting the
function f “reduces” to signature forgery: given a
forgery algorithm F, one can construct an
inversion algorithm I

• Provable security: inversion hard →→  forgery hard

• “Tight” proof closely relates hardness of
problems



Random Oracle Model

• In the random oracle model, certain functions are
considered “black boxes”: forgery algorithm
cannot look inside

– e.g., hash functions

• Model enables reduction proofs for generic
forgery algorithms — inversion algorithm hides
value to be inverted in oracle outputs

• Multiplicative properties of RSA can enhance the
proof



Part III: Contemporary
Signature Schemes



Overview

• Several popular approaches to RSA signatures

• Approaches differ primarily in the mapping µµ

• Some differences also in key generation

• Some also support Rabin-Williams (even
exponent) signatures

• There are many other signature schemes based
on factoring (e.g., Fiat-Shamir, GQ, Micali, GQ2);
focus here is on those involving the RSA function



Schemes with Appendix

• Basic scheme

• ANSI X9.31

• PKCS #1 v1.5

• Bellare-Rogaway FDH

• Bellare-Rogaway PSS

• IEEE P1363a version of PSS



Basic Scheme

• µµ(M) = Hash(M)

• Pedagogical design

• Insecure against multiplicative forgery for typical
hash sizes

• (Hopefully) not widely deployed



ANSI X9.31
(Digital Signatures Using Reversible Public-Key
Cryptography for the Financial Services Industry, 1998)

• µµ(M) = 6b bb … bb ba || Hash(M) || 3x cc

where x = 3 for SHA-1, 1 for RIPEMD-160

• Ad hoc design
– cc octet for RW support

• Resistant to multiplicative forgery
– some moduli are more at risk, but still out of range

• Widely standardized
– IEEE 1363, ISO/IEC 14888-3

– US NIST FIPS 186-1

• ANSI X9.31 requires “strong primes”



PKCS #1 v1.5
(RSA Encryption Standard, 1991)

• µµ(M) = 00 01 ff … ff 00 || HashAlgID || Hash(M)

• Ad hoc design

• Resistant to multiplicative forgery
– moduli near 2k are more at risk, but still out of range

• Widely deployed
– SSL certificates

– S/MIME

• Included in IEEE P1363a; PKCS #1 v2.0 continues
to support it



ANSI X9.31 vs. PKCS #1 v1.5

• Both are deterministic

• Both include a hash function identifier

• Both are ad hoc designs
– both resist [CNS99]/[CHJ99] attacks

• Both support RSA and RW primitives
– see IEEE P1363a contribution on PKCS #1 signatures

for discussion

• No patents have been reported to IEEE P1363 or
ANSI X9.31 for these mappings



Bellare-Rogaway FDH
(Full Domain Hashing, ACM CCCS ’93)

• µµ(M) = Full-Length-Hash(m)

• Provably secure design
– resists any attack where hash function is considered a

black box, provided that RSA is hard to invert

• Variant included in IEEE P1363a, PKCS #1 v2.1
draft



Bellare-Rogaway PSS
(Probabilistic Signature Scheme, Eurocrypt ’96)

• µµ(M) ≈≈ H || G(H) ⊕⊕ salt

where H = Hash(salt, M), salt is random, and G is
a mask generation function

• Provably secure design

• Variant included in IEEE P1363a, PKCS #1 v2.1
draft



FDH vs. PSS

• FDH is deterministic, PSS is probabilistic

• Both are provably secure designs
– same paradigm as Optimal Asymmetric Encryption

Padding (OAEP)

• PSS has tighter security proof, is less dependent
on security of hash function

• PSS-R variant supports message recovery, partial
message recovery

• PSS is patent pending (but generously licensed)



IEEE P1363a Version of PSS

• µµ(M) = G(H) ⊕⊕ [00 … 01 || salt] || H || bc

where H ≈≈ Hash(salt, Hash(M)), salt is random,
and G is a mask generation function

• Salt combined with Hash(M) rather than M for
practical and security reasons:

– “single-pass” processing

– provable security if Hash(M) outside crypto module

– protection against fault-analysis attacks

• Salt can be omitted for FDH-like scheme



Schemes with Message Recovery

• Basic scheme

• ISO/IEC 9796-1

• ISO/IEC 9796-2

• Bellare-Rogaway PSS-R

• IEEE P1363a version of PSS-R



Basic Scheme

• µµ(Mr) = Mr

• Another pedagogical design (“textbook RSA”)

• Insecure against various forgeries, including
existential forgery

– attacker can select signature s then “recover” Mr = f(s)

• Again, hopefully not widely deployed



ISO/IEC 9796-1
(Digital Signature Scheme Giving Message Recovery, 1991)

• µµ(Mr) = ππ*(ml-1) ππ’(ml-2) ml-1 ml-2

       ππ (ml-3) ππ(ml-4) ml-3 ml-4 ...
      ππ(m3) ππ(m2) m3 m2

      ππ(m1) ππ(m0) m0 6

where mi is the ith nibble of Mr and ππ*, ππ’ and ππ are
permutations

• Ad hoc design with significant rationale

• Not resistant to multiplicative forgery [CHJ99]
[Grieu 1999]

– may still be appropriate if applied to a hash value

• Moderately standardized



ISO/IEC 9796-2
(Digital Signature Scheme Giving Message Recovery —
Mechanisms Using a Hash Function, 1997)

• µµ(Mr, Mnr) ≈≈ 6a || Mr || H || bc

• µµ(Mr) = 4b bb … bb ba || Mr || H || bc

where H = Hash (Mr, Mnr) or Hash (Mr)
– (assumes modulus length is multiple of 8)

– general format allows hash algorithm ID

• Ad hoc design

• Not resistant to multiplicative forgery if hash
value is 64 bits or less [CNS99]

– may still be appropriate for larger hash values

• Newly standardized



Bellare-Rogaway PSS-R
(Probabilistic Signature Scheme with Recovery, 1996)

• µµ(Mr, Mnr) ≈≈ H  || G(H) ⊕⊕ [salt || Mr]

where H = Hash(salt, Mr, Mnr), salt is random, and
G is a mask generation function

• Provably secure design

• Variant included in IEEE P1363a, draft revision of
ISO/IEC 9796-2



IEEE P1363a Version of PSS-R

• µµ(Mr, Mnr) = G(H) ⊕⊕ [00 … 01 || Mr || salt] || H || bc

where H ≈≈ Hash(salt, Mr, Hash(Mnr)), salt is
random, and G is a mask generation function

• Extension of PSS variant
– PSS variant is special case where Mr is null



Part IV: Standards
Strategy



Standards vs. Theory vs. Practice

• ANSI X9.31 is widely standardized

• PSS is widely considered secure

• PKCS #1 v1.5 is widely deployed

• How to harmonize signature schemes?
– (primary question for signature schemes with

appendix; related question for message recovery)



Challenges

• Infrastructure changes take time
– particularly on the user side

• ANSI X9.31 is more than just another encoding
method, also specifies “strong primes”

– a controversial topic

• Many communities involved
– formal standards bodies, IETF, browser vendors,

certificate authorities



Prudent Security

• What if a weakness were found in ANSI X9.31 or
PKCS #1 v1.5 signatures?

– no proof of security, though designs are well motivated,
supported by analysis

– would be surprising — but so were vulnerabilities in
ISO/IEC 9796-1,-2

• PSS embodies “best practices,” prudent to
improve over time



Proposed Strategy

• Short term (1-2 years): Support both PKCS #1
v1.5 and ANSI X9.31 signatures for
interoperability

– e.g., in IETF profiles, FIPS validation

– FIPS 186-2 schedule allows PKCS #1 v1.5 for an 18-
month transition period, FPKI TWG is requesting a
further extension

• Long term (2-5 years): Move toward PSS
– upgrade in due course — e.g., with AES algorithm, new

hash functions

– separate assurance requirements from interoperability

• e.g., key sizes, key protection, “strong primes”



Standards Work

• PSS, PSS-R standardization work in progress in
various forums:

– IEEE P1363a

– PKCS #1 v2.1

– ISO/IEC 9796-2 revision

• Coordination ongoing, ballot target Spring 2001

• Promotion in other forums planned
– ANSI X9.31

– FIPS

– IETF



Conclusions

• Several signature schemes based on RSA
algorithm

– varying attributes: standards, theory, practice

• Recent forgery results on certain schemes,
security proofs on others

• PSS a prudent choice for long-term security,
harmonization of standards
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